AMO
  • Home
  • Projects
    • Cryoconite Holes
    • Herbicides and Microbes
    • Microbe-Plant Interactions
    • Microbial Succession
    • Biogeography
    • Extremophiles
  • Publications
  • Field Sites
    • Colorado
    • Alaska
    • Chile/Argentina
    • Perú
    • Antarctica
    • Nepal
    • Tanzania
  • Microbe of the Month
  • Outreach
  • PEOPLE
    • Lab Members
    • Collaboratos
  • Contact

Microbe of the Month

Paramecium putrinum

5/19/2017

1 Comment

 
Paramecium putrinum
By Pacifica Sommers
 
This month’s microbe, Paramecium putrinum, is a ciliate. Ciliates are single celled animals, but can be large by microbial standards: many of them that I have observed are more than 100 µm long. That may sound small, but it is 50 times larger than most bacteria, which are usually less than 5 um (Kubitschek et al. 1993), and 5-10 times larger than most human cells, which are 10-20 µm (Barrandon et al. 1985). Ciliates are more like a human cell than a bacterium because their DNA is encased inside an envelope-like membrane in a nucleus (actually in many nuclei, Lee et al. 2000) inside the cell, which bacteria do not have.
 
Ciliates generally eat other organisms, including algae, bacteria, and even other ciliates (Lee et al. 2000). They get the name “ciliate” from the hair-like cilia, structures that beat like tiny oars to propel the cell gracefully through water – even the small amounts of water between grains of soil! Ciliates live in all kinds of environments, from inside humans (yuck), to soils, to ephemeral rock pools on top of volcanoes, and even on glaciers (personal observation!).
 
An example of a ciliate (fig. 1) you may have seen in biology class is Paramecium multinucleatum. Why, you might wonder, is a lab focused on uncultured wild microbes in alpine soils writing about a Paramecium? Well, Paramecium putrinum, a cousin of sorts of the common “lab rat” P. multinucleatum, turned up in Antarctic cryoconite holes! Cryoconite holes are mud puddles that melt into glaciers. You can learn more about our research in Antarctic cryoconite holes at cryoholes.wordpress.com.
 


Picture
Figure 1. Hand drawn re-creation of a happy paramecium courtesy of Pacifica.
Mieczan and colleagues (2013) found P. putrinum in 30-40% of the cryoconite holes on a coastal Antarctic glacier, both in the sediment at the bottom of the hole and at the top. Having watched many a “lab rat” Paramecium cruising around a petri dish, their wide distribution inside the cryoconite holes does not surprise me. Having tried freezing and resuscitating my cultures of Paramecium multinucleatum, however, the ability of this species to live in Antarctica is surprising! Cryoconite holes there definitely freeze solid during the long, dark winter, so P. putrinum must have freeze-tolerant abilities that its lab rat cousin lacks.
 
We find a few DNA sequences that map most closely to Paramecium in cryoconite holes in a dry valley of Antarctica (fig. 2-3), on the far side of the continent from where Mieczan and colleagues sampled. Although ciliates in general are some of our most abundant DNA there, Paramecium is not the most common – but it might be a similar Paramecium to the one Mieczan found! 
 

Picture
Figure 2. Photo of Taylor Valley, Antarctica. Photo by Pacifica Sommers.
Picture
Figure 3. Photo of crew on glacier sampling cryoconite holes. Photo by Pacifica Sommers.
References
Barrandon, Y. and Green, H., 1985. Cell size as a determinant of the clone-forming ability of human keratinocytes. Proceedings of the National Academy of Sciences, 82(16), pp.5390-5394.
 
Kubitschek, H.E., 1990. Cell volume increase in Escherichia coli after shifts to richer media. Journal of bacteriology, 172(1), pp.94-101.
 
Lee, J.J., Huntner, S.H. and Bovee, E.C., 2000. An illustrated guide to the protozoa, Second Ed. Society of Protozoologists.
 
Mieczan, T., Górniak, D., Świątecki, A., Zdanowski, M. and Tarkowska-Kukuryk, M., 2013. The distribution of ciliates on Ecology Glacier (King George Island, Antarctica): relationships between species assemblages and environmental parameters. Polar Biology, 36(2), pp.249-258.
1 Comment
adrian link
11/4/2019 02:00:27 am

no nut november ist so mies

Reply



Leave a Reply.

    Author

    Various lab members contribute to the MoM Blog

    Archives

    October 2023
    January 2021
    September 2020
    August 2020
    July 2020
    June 2020
    May 2020
    April 2020
    March 2020
    February 2020
    January 2020
    December 2019
    November 2019
    October 2019
    September 2019
    August 2019
    July 2019
    June 2019
    May 2019
    April 2019
    March 2019
    February 2019
    January 2019
    December 2018
    November 2018
    October 2018
    September 2018
    August 2018
    July 2018
    June 2018
    May 2018
    April 2018
    March 2018
    February 2018
    January 2018
    December 2017
    November 2017
    October 2017
    September 2017
    August 2017
    July 2017
    June 2017
    May 2017
    April 2017

    Categories

    All

    RSS Feed

Powered by Create your own unique website with customizable templates.
  • Home
  • Projects
    • Cryoconite Holes
    • Herbicides and Microbes
    • Microbe-Plant Interactions
    • Microbial Succession
    • Biogeography
    • Extremophiles
  • Publications
  • Field Sites
    • Colorado
    • Alaska
    • Chile/Argentina
    • Perú
    • Antarctica
    • Nepal
    • Tanzania
  • Microbe of the Month
  • Outreach
  • PEOPLE
    • Lab Members
    • Collaboratos
  • Contact